May 23, 2017 Volume 13 Issue 20
 

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

What's in a name? Union Tech exec sets record straight on stereolithography 3D-printing terminology

By Jim Reitz, General Manager of Union Tech, Inc.

While speaking to attendees at the Additive Manufacturing Users Group recently, I observed that the term SLA® has become synonymous with a wide range of additive manufacturing processes that utilize a UV light source to cure, layer by layer, a photopolymer formulation to translate a Computer Aided Design (CAD) into a three-dimensional part. People use SLA to describe a range of processes, from laser-based industrial and desktop systems to a variety of Digital Light Processing (DLP) based systems. So, what's the significance of SLA semantically transitioning to a catch-all description? Is it important to make a distinction between SL and SLA as a descriptor of the stereolithography process?

Stereolithography was the first widely used process in what has become the additive manufacturing industry. SLA was and remains, to my knowledge, a registered trademark of 3D Systems. Any student of 3D printing history understands SLA as the abbreviation for StereoLithography Apparatus, similar to PCA as the commonly used abbreviation for Post-Cure Apparatus. SL is an easily understood and generic abbreviation for stereolithography as a process, distinct from any particular equipment.

There is, however, an even bigger issue than distinguishing SL as a generic process descriptor. Consider how commonly used industrial SL equipment works: powerful, lower wavelength lasers draw an image from overhead onto a platform accurately positioned in a vat of photopolymer with mechanical re-coating between layers and the platform traveling downward. Now consider significant differences in the various processes referred to as SLA:

  • Imaging can be effected from beneath the "vat" through a UV transparent platform with the imaged part connected to a platform that raises into the air.
  • Support requirements can vary by process.
  • Differences in light source from laser type to DLP lamp.
  • Imaging by drawing each layer vs. "projecting" the entire layer instantaneously.
  • Variations in UV light sources, wavelength, and energy.
  • Formulation chemistry tailored to a particular wavelength and available curing energy.
  • Differences in re-coating capability and practical layer thicknesses.
  • Significant variations in post-cure requirements ranging from a UV cure to an elevated temperature baked.

Compared to traditional industrial SL, these variations can translate to significant practical differences regarding part size, build speed, accuracy, precision, finishing requirements, and physical and mechanical properties. This is why it is so critical to use accurate terminology and avoid the muddling of process attributes. As the additive manufacturing (AM) user base expands rapidly, we must develop strong foundations of understanding relative to the benefits and limitations of the available processes. Re-introducing technical distinctions between these photopolymer processes will ensure better end-user understanding and satisfaction when choosing the process and materials that best serve their needs.

UnionTech launched an array of stereolithography printers last September.

 

 

Can we abandon the word-mush and potential issues of using the trademarked term SLA and use reasonable descriptors that clearly delineate these AM processes? For instance: 355-nm SL, 405n-m desktop SL, and (wavelength specific) DLP are all good starting points to allow potential users to recognize differences in process type and the implications of the process. Let's avoid allowing search engine optimization or broad-brush marketing considerations to dictate technical process descriptors that aid in the proper communication of technology capabilities.

Established in 2000, the UnionTech™ brand of photopolymer 3D-printing equipment is now the domestic China market leader in stereolithography. Union Tech, Inc. was formed in 2016 in St. Charles, IL, as a fully owned subsidiary of Shanghai Union Technology Corporation.

Published May 2017

Rate this article

[What's in a name? Union Tech exec sets record straight on stereolithography 3D-printing terminology]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2017 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy